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The Effect of Shear Stresses 

on the Carrying Capacity of 1-Beams 

by 
2 

Carl-Fredrik A. Leth 

Abstract. 

This paper considers the tending of a cantilever I-beam 

of a ductile metal, such as mild steel, that is loaded by a 

transverse force at the free end.  Taking the length of the beam 

into account the load carrying capacity can be expressed in terms 

of the moment at the built-in end that is in equilibrium with the 

maximum transverse force at which collapse of the beam is immi- 

nent, owing to the development of regions of plastic flow.  The 

influence of the length of the beam upon this limit moment is 

studied in the paper. 

As the simplest approximation of the limit moment the 

fully plastic moment can be taken.  From experimental evidence 

it is known that sufficiently long beams can support a force 

that is in equilibrium with the fully plastic moment. But it is 

also observed that for beams that have both a short length and 

an I-shaped cross-section, the limit moment may be considerably 

less than the fully plastic moment.  The aim of the paper is to 

obtain theoretical estimates of the maximum moment that these 

I-beams can develop at the built-in end, assuming that the 

material exhibits ideal plasticity. 

1. The results presented in this paper were obtained in the 
course of research sponsored by the Office of Naval Research 
under Contract N7onr-35301 with Brown University. 

2. Research Assistant, Graduate Division of Applied Mathematics, 
Brown university, Providence 12, R, I, 

I 
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At present a complete three-dimensional solution of the 

problem seems to be out of the question. Even for a two-dimen- 

sional model of the problem it would be very difficult to obtain 

a complete elastic-plastic solution.  The limit analysis theorems 

of Drucker, Prager and Greenberg are therefore applied.  These 

furnish upper and lower bounds for the limit moment.  Two approx- 

imate lower bounds are obtained by constructing two different 

admissible stress fields for a two-dimensional model of the 

problem.  Only the second bound gives estimates of the limit 

moment for short beams, but both bounds are applicable to long 

beams.  For short beams an upper bound is obtained from a kine- 

matically admissible velocity field, using the appropriate limit 

analysis theorem. 

The first stress field is based on a natural extension 

of the conventional elastic theory of the bending of beams, 

modifying this in such a way that at loads above the load at 

which plastic flow first occurs the yield condition is not 

violated anywhere.  The second stress field is artificial in the 

sense that it is unrelated to the stress distribution of an 

elastic beam,  Nevertheless, it furnishes in a much shorter way 

than the first a lower bound for the limit moment, valid for 

both short and long beams. 

Both stress fields yield values of the limit moment which 

tend towards the fully plastic moment for long beams as the ratio 

of the beam length to depth is increased.  For short beams the 

second stress field gives a value of the limit moment which 

differs considerably from the fully plastic moment.  For this 
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reason a velocity field is constructed so that an upper bound 

is obtained for short beams.  This velocity field is based on 

the failure of the short I-beam primarily because of shear in 

the web.  It is shown by examples that the upper and lower 

bounds are very close for short beams» 

The theoretical results obtained in this paper are com- 

pared with the reported experimental data that are concerned 

with the influence of shear stresses. The experiments give a 

reasonable confirmation of the theoretical resxilts both for the 

value of the limit moment and for the computed critical length 

of the beam below which the carrying capacity rapidly decreases. 

A.  Introduction. 

The problem of the elastic-plastic bending of beams is 

so complex that at present no rigorous complete solutions have 

been found.  In this paper is presented an approximate treat- 

ment of a cantilever I-beam which carries a transverse force 

parallel to the web at the "free" end, Fig. 1,  The purpose is 

to study the effects of the shear stresses on the carrying 

capacity of the beam.  These may gain importance because of the 

difference in width of the flange and the web. 

In the elastic analysis of the general problem of a 

beam under end loading an exact solution can be obtained by the 

seim-inverse method of Saint-Venant.  For commonly used beam 

sections, however, this solution is too complicated to be used 

in normal engineering practice.  Instead an approximate solution 

is used that is based upon an assumption, introduced by J« 

Bernoulli, concerning the deformation of the beam. The deflection 
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of the beam is assumed to take place in such a way that points 

which initially lie in a plane normal to the center-line after 

the deformation also form a plane that is normal to the de- 

flected center-line.  This condition together with the equili- 

brium equations and Hooke's law yields results that do not ful- 

fill the compatibility equations.  Furthermore if the cross- 

section is not rectangular the condition of a stress-free 

cylindrical surface of the beam is violated.  These inconsis- 

tencies are generally of minor importance, however, as many 

experiments have snown. 

In considering the bending of the beam of Fig. 1 beyond 

the elastic limit, we have formulated a problem that is of 

fundamental importance in the theory of limit analysis of struc- 

tures.  It is not appropriate in this paper to discuss the 

procedures of limit analysis. Such discussions can be found 

e.g. in the book by Van den Broek [1] and the papers by Baker 

[2] and Symonds and Neal [3],  It is sufficient to state that 

limit analysis of beams and frames is an analysis of failure of 

these structures associated with the formation of "plastic 

hinges" in the members of the structure.  Plastic hinge sections 

are defined as those across which rotations of arbitrary magni- 

tudes can occur while a constant bending moment, called the 

limit moment, MQ, is transmitted.  In this paper we discuss the 

computation of the hinge moment at the base of a cantilever I- 

beam, since this can be regarded as the basic structural element 

* Numbers in square brackets refer to the Bibliography at the 
end of the paper. 
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in any continuous beam or rigid frame. We shall compare the 

limit moment for such a cantilever with the approximation to the 

limit moment that is commonly used in the applications of limit 

analysis, namely the "fully plastic moment", M .  This latter 

moment is now considered in detail. 

Consider first a beam subjected to pure bending. Let 

the beam have two planes of symmetry and let the moment act in 

one of them, Fig, 2, Assume the material to follow the perfect- 

ly elastic-plastic stress-scrain law, i.e., the stress-strain 

diagram in simple tension of Fig. 3» Moreover let it be assumed 

that each fiber is in a state of simple tension or compression, 

so that d is the only non-vanishing stress. The condition that 

cross-sections remain plane in the elastic part of the beam then 

yields the distribution of stress over the cross-section that is 

depicted in Fig. h»     In Fig, >+a the outmost fiber has not reach- 

ed the yield stress, but in M-b the moment has increased so that 

the outer part of the cross-section becomes plastic, while the 

inner part remains in the elastic state.  In Fig, *+c the curva- 

ture of the beam has taken such a large value that the elastic 

core in the center can be neglected and the plastic regions are 

considered to cover the entire cross-section.  The bending moment 

corresponding to this last state is called the fully plastic 

moment• 

In general for a beam having two planes of symmetry, in 

one of which the lead is applied, the fully plastic moment is 

given by 
M^ = YZ 
P    P 

I 
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where Z is twice the moment of the cross-section area on one 

side of the middle surface, with respect to the transverse axis 

of symmetry.  In the special case of an I-beam, the fully plastic 

moment can be considered to consist of two parts, namely the 

contributions from the flanges and irom the web. We then have 

M = M _ + M 
p   pf   pw 

wh^re M  = b, (a - c^Y and M  " be Y.if the web and flange 
pf   1 pw 

are assumed to be rectangles, Fig. 5» 

Note that the stress distributions of Fig. h  are not an 

exact solution oven for a rectangular beam in pure bending, as 

was pointed out by Hill [*+]; these stresses are not consistent 

with continuity of displacements at the elastic-plastic boundary. 

In the more general problem of the bending of the beam 

in the presence of shear forces, ehe moment varies along the 

beam, and it is necessary to remove the previous assumption that 

T„_ is zero.  It is shown in the book, of Prager and Hodge [5] , 

see also Hodge [6], that T  must vanish in the plastic region 

that spreads in from the outer fibers.  Hence the distribution 

of the longitudinal stress, depicted in Fig. *+, remains unchanged 

if the other assumptions of the analysis for simple bending are 

retained.  The depth of the plastic region then varies according 

to the distribution of the moment along the beam.  Figure 6 shows 

the plastic region in the cantilever beam loaded with a shear 

force at the free end.  As the elastic region must carry the 

total shear force, the shear stresses increase in magnitude 

towards the built-in end at the center of the beam.  Failure by y. 
i 

: 
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collapse occurs when the limit moment in the presence of shear 

is reached at the built-in sections; deflections would then 

continue under constant load, if geometry changes are neglected, 

with rotations of arbitrary amounts at the plastic hinge at the 

built-in end.  Tn most applications of limit analysis the com- 

ponent beams are assumed to be sufficiently long with respect 

to their depth so that the shear stresses can be neglected in 

computing the limit moment.  Thus the fully plastic moment is 

taken in these cases as a good approximation of the actual limit 

moment. 

An early paper dealing with the shear stresses at the 

section of failure of the beam was written by Stussi [7]»  He 

considers a beam under the influence of a moment and a shear 

force.  Assuming that the longitudinal stress follows a general 

stress-strain law in simple tension for mild steel and consider- 

ing plane cross-sections to remain plane over the entire cross- 

section, the distribution of shear stress is obtained with the 

help of the equilibrium equation.  The fact that the value of 

the longitudinal stress at yield is affected by the presence of 

these shear stresses is neglected.  The shear stress at the 

center of the critical cross-section at a specified stage of the 

loading is considered to form the condition for the failure of 

beam. 

A recont investigation of the shear stresses at the most 

highly stressed section has been presented by Home [8],  A 

rectangular or an I-shaped cross-section under the assumption 

of plane stress and the Tresca yield condition is treated,  At 
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failure two different plastic regions appear.  One of these 

•contains the outer fibers of the beam at the built-in end where 

longitudinal stresses are large5 the other plastic region devel- 

ops at the center of the- beam where shear stresses predominate.. 

The assumption that plane cross-sections remain plane during the 

deformation is adopted in the elastic region.  In the plastic 

regions account is taken of the equilibrium and yield conditions, 

but not of strains. It is not possible in this solution to 

satisfy all the matching conditions of the stresses at the 

plastic-elastic boundaries, For the case of I-beams the poss-. 

ibility of a violation of the yield condition at the flange-web 

junction is not investigated. 

A different viewpoint is presented in a paper by Onat 

and Shield £9 ]• The same problem as in Fig, 1 is treated for a 

rectangular cross-section with the assumptions of plastic-rigid 

material and plane strain conditions. The exact solution (ful^ 

filling both stress» and flow-conditions) for the region near 

the •built-in end is obtained. 

In the experimental studies of the bending of beams 

beyond the elastic limit, there are many results showing that 

for long beams the fully plastic moment provides a good approxi- 

mation to the limit moment» A survey of these studies has been 

presented by Roderick and Phillips [10].  On the other hand, 

relatively few experiments have been made whose aim was to study 

the behavior of the beam when shear effects are important. ' 

Apparently the only extensive tests of this nature are those 

made by Baker and Roderick [11], Hendry [12], and Johnston, 

~r>-—-~y= 
r-L_^r\i: 
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Yang and Beedie [13]. The comparison of the results of this 

paper with these experiments is. postponed until after the analy- 

sis' has "been described. 

B,  General -concept's. 

The analysis in this paper is based upon the two limit 

analysis theorems of Drucker? Präger and Greenberg [ lV] .  The 

main part of the paper is concerned with the first of these 

theoremsj and we begin by defining the terms and concepts that 

are used in it. 

A yield function 3> is- a positive definite function of 

the stress components only, such that plastic flow can occur 

when $ = 1.  In a stress-free state we have <£> = 0 and the elas- 

tic range consists of 0 < <£ <1. We then define a safe state Of 

stress as a state for which # < 1 throughout the structure. 

On the other hand collapse, is. defined äs the state for which 

plastic flow would occur under constant load if the accompanying 

changes in the geometry of the structure were disregarded., More- 

over we call a stress system statically admissible when it 

satisfies the equilibrium equations and is consistent with the 

surface tractions on the boundary of the bodya The first limit 

analysis theorem then states that if a safe statically admissible 

state of stress can be found at each stage of loading, collapse 

will hot occur under the given loading schedule.  Thus a load 

at which a safe statically admissible stress field can be con- 

structed is a lower bound for the collapse load of a structure. 

In the main part of this paper we apply the theorem 

stated above to the problem of estimating a lower bound for the 



All-107 10 

maximum end force that can be applied to a cantilever beam, Fig. 

1. As discussed later in this section we find it necessary to 

make certain approximations in the construction of safe stati- 

cally admissible stress fields fur this problem.  Since the 

conditions of the theorem are not satisfied exactly, the maximum 

loads obtained in our analysis cannot be regarded as true lower 

bounds of the collapse load of the problem» However, it is 

believed that the nature of the approximations is such that the 

results will be of practical usefulness, and will serve as a 

guide to further experiments. 

As it is part of our purpose to study plastic regions in 

the beam we consider stress systems that fulfill the yield con- 

dition $ <    1, the equilibrium equations, and agree with the 

specified surface tractions. We then know that the correspond- 

ing load either is the true collapse load or is smaller than 

this load.  This is true because of the face that any smaller 

load will be in equilibrium with a safe statically admissible 

stress-system and therefore cannot be a collapse load.  Note 

that, when \ising this theorem, ve focus our attention entirely 

on the stresses.  This was öone also by Home [8], who dealt 

primarily with conditions on the stresses.  The lower bound 

theorem provides a basic justification for this point of view. 

We shall here use the yield function that was proposed 

by von Mises.  It has the form (sec [5]) 

0 = "T Ld 2 + d 2 + ö 2 _ ö - _ ö ö 
Y^
X

   y        z        x y  yzzx 

+ V 2 + 3T 2 + 3T 2 1. 
»- 
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Although we have eliminated above all considerations of 

compatibility of strains the problem is still so complicated that 

further simplifications must be made. Following the method of 

the approximate elastic solution, mentioned in the Introduction, 

this analysis is made two-dimensional in the x,z plane, so that 

d , i       and d^ are the only non-vanishing stresses. Moreover 
X   XZ       Z 

we assume the stresses to be independent of the y-coordinate. 

This implies that the condition of no surface traction on the 

inner sides of the flanges must be violated.  The same error 

appears in the approximate clastic solution.  This cannot, of 

course, be taken as a justification of the assumption in the 

problem of the plastic bending of the beam.  Such justification 

must ultimately be found in a more complete theory or by experi- 

ments. 

Two different stress fields are constructed in the 

following.  In the first analysis (Section C) it is desirable to 

make a further approximation.  This consists of assuming the d_ 

stress to vanish, and it turns out that one of the two equili- 

brium equations cannot generally be satisfied in this case.  In 

the second analysis (Section D) the same assumption is made, but 

for this stress field it is found that a vanishing d  docs to z 

satisfy both equilibrium equations.  Hence no approximation in 

this regard is involved in the second type of stress field.  As 

this second analysis fives quite satisfactory values of the 

estimates of the limit momont no attempt is made to consider the 

effects of the d  stress in the first analysis. 
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The first analysis Is built up as a continuation of the 

conventional elastic theory of the bending of beams.  In this 

theory it is known that the most highly stressed points of long 

beams are located in the outer fibers at the built-in section. 

Hence we assume that plastic regions start at these points and 

then spread in through the flange into the web, Fig. 6, At some 

stage a new plastic region will form starting from the center 

point of the web at the built-in section.  In this first analy- 

sis we estimate the limit load by the load that corresponds to 

the stage \v.en the stresses at the center of the beam at the 

built-in section just start to produce plastic flow. The present 

estimates of limit loads are conservative on this account. The 

calculation in the first part of the analysis considers this 

case v/here the plastic regions have the shape indicated in Fig. 

6. However, when the yield condition is checked in the elastic 

region, we find that a critical point exists at the flange-web 

junction for beams of relatively short length.  This suggests 

that a second plastic region will occur in the outer portions 

of the web, as shown in Fig. 7t The second part of this analysis 

considers this case.  In the third part, beams of still shorter 

lengths are treated, namely the case when the second plastic 

region extends into a cross-section of the beam that otherwise 

would have been entirely elastic.  This is shown in Fig. 8. 

At the start of the second analysis (Section D) a stress 

field is constructed which is anticipated by the failure of a 

very short beam due to shear in the web.  It is then .tbund possi- 

ble to generalize this stress field so that beams of arbitrary 
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lengths can be treated. 

The second type of stress field is both simpler and more 

general than the first type, and it will probably provide the 

more useful basis for estimating limit moments in the presence 

of shear forces.  On the other hand the second type of stress 

field is quite artificial, whereas the first type is a natural 

extension of the well confirmed simple theory of elastic-plastic 

bending of beams.  In this respect it corresponds to and supple- 

ments the analysis of Home [8] . 

C,  Analysis for the first type of stress field. 

For the first type of stress field this analysis is 

divided into three parts, based in turn on the three configura- 

tions of plastic regions shown in Figs. 6-8,  The analysis will 

show that there exist for a given cross-section shape three 

decisive lengths -t , •£ and -v- which determine the appropriate 

configuration. 

1. Beams of length so that -t >   <t  and £ >. ^ • 

We here consider plastic regions as shown in Fig. 6. 

They are bounded by the outer sides of the flanges, by the built- 

in section and the curve u(:c).  In zone BC of the beam the 

plastic regions extend into the web, but in zone CF the bounda- 

ries of the plastic regions are located in the flange.  With the 

assumption ö  = 0, the two remaining stresses in the plastic 

regions are described by the equilibrium equation and by the 

yield condition: 
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3d   3TV7 —x + —xz, _ 0 '^ 
öx   a z v ' 

(d2 + 3T 2) -L a 1 (2) 
X 

The yield condition (2) is identically satisfied if we relate 

the stresses to each other through the function a(x,z) in the 

following manner. 

dx = Y cos a,  TXZ =-| sin a. 

The equilibrium equation becomes 

V~3  |a sin a - |fl cos a = 0. (3) 

The characteristics of this equation are lines along which a is 

constant.  The expression 

da = Sä dx + — d? = 0 9x ax   6z az  u 

together with equation (3) implies that the characteristics are 

straight lines with the slope 

i = -C7f00t<I- <"> 
On the boundary z = a we have a = Y, T   = 0 or a(x,a) = 0, x   ' xz ' 
The characteristics are therefore lines parallel to the z-axis 

and the stresses in the plastic region are given by 

öx = Y»  Txz = °- 

In the elastic part of the beam we follow the theory 

based upon the Bernoulli assumption. This implies a tensile 

stress linear in z.  In the elastic part of zone BC we therefore 

I 
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have 
x  u 

(From here on we consider only positive z-values.  The quantities 

in the beam are either symmetrical or anti-symmetrical around the 

middle surface.) The equilibrium equation (1) determines the 

shear stress.  Using the boundary condition t  (x,u) = 0 we xz 

obtain ,      p 

- - £ a - 4» 
u 

Txz 

where the prime denotes differentiation with respect to x.  The 

boundary u(x) between the plastic and elastic regions in the zone 

BC is determined by the total moment at any cross-section.  It 

is 2 
Px = M - I \  M 

P  3 Q2 pw 
or 

2    M - Px 

h • 3 -\— • (5) 
c        pw 

The cross-section C is determined by uc = c or 

M - i M 
P  3 pw .. 

xc =  ?  . (6) 

In the elastic part of zone CF we have 

ö  = - Y x  u x 

and the shear stress in the flange is also given by equation (1) 

Txz = ~ T" (1 - %) Y. 
u 

To find the shear stress in the web we must consider the differ- 

ence in the width of the beam at the flange-web junction,  W> 

I 
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let the equilibrium condition be satisfied only approximately; 

namely we assume that the shear stress has the same jump at the 

flange-web junction as the width of the beam, Hence the boundary 

condition for the shear stress in the web is 

(x,c) = -Sl3£ (l -4) Y. •xz*-»-'    b T 
u 

The equilibrium equation (1) then gives the shear stress in the 

web 

xz 
,2b 2 

= - \  [1 - K +   (-rf - 1)(1 - %) ] Y. 
u 

As before the plastic-elastic boundary u(x) in zone CF is deter- 

mined by the total moment at any cross-section.  It is 

,2 s c Pxs« (a* - u^)b, + (ud - c^) £ b 
1 u 1 

L 
,2 

+ (u = c)  v [c + 2(u _ c)] + 2 
u 3 u -J b :>Y 

or 
u_  -2 r §_  Pxb i u 
3 " J L 2 " M b. c-5     c    pw 1 ; "   :>r^ c + 2(1 " E") = 0- 

Jb. 
>1 

(7) 

The cross-section F is determined by tu = a, i.e.. 

al  ,ra£  !^F_
b 

3 " J L 2 - M b 
] a + 2(1 _ D ) = 0 

pw 1 1 

or 
x    = U 
F  aP (8) 

whore I is the moment of inertia oi the cross-section 

= | [b1&3 - (bx - b)c3]. 

In the entirely elastic zone FH the tensile stress is 

given by 
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dx = Txz- 

The equilibrium equation (1) again determines the shear stress, 

so that 

x      = .p(a ~ 2-1 in the flange 
X.Z C~<X. 

x      -   ^   in the web, 
xz       21 

The validity of the stress-system, obtained above, 

depends on two conditions.  First, it is assumed in Fig. 6 that 

the plastic regions extend into the web at the built-in section. 

Secondly, the yield function is assumed not to exceed unity in 

the elastic region. The first condition implies Ug<  c, i.e., 

M - i M 
l>    P  3 pW. (9) 

P 

For the second condition we form the yield function 

* = (öx + 3^> ^ 

in the different parts of the elastic region. We obtain 

$  = £  + 27 ,£c_ 2 c2 n   z2.2 *BC "2 + IT C
M  ) T (1 - -5) u       pw  u     u^ 

$ 
- z2  27 ,£c_ 2    (u/c)2 - (z./c)2  ,2 ^n 

CF 2 + K ^M—) ( Z '   in tne flange 
u^  XD wpw [(u/c)3 - lJb-L/b + 1 

2 1 - (z/c)2 + [(u/c)2 - ljb-j/b 2 
<X>  = z_ + 27 /££-,2 /  
CF  u2  " V     [(u/c)3 - l]bl/b + 1 

) 

in the v/eb 

i 
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•ta - AcA2+a(*2 --^ in the flange 

i J.                              pw 
in  the web. 

When we look for possible maxima of <£ we notice that in the zone 

FH $> has its maximum value at the section F.  Hence we need only 

to check the zones BC and CF. 
2  2 In the zone BG it is convenient to consider z /u = £ 

o     p     o 
and 27/16 (Pc/M_ )  c /vr  =TJ as the two independent variables» 

Then 
s>BCu,ri) = K +nci - O . 

A maximum appears on the boundaries t) = T] „ and %  = 1.  At inax 
£ = 1 we have $ = 1, so the critical section is t} = ti   corres- 

ponding to the smallest possible value of u, i.e., the built-in 

section.  The maximum of $ at this section appears for z = 0» 
• 

As mentioned in the previous section we take the load P^_ as an 

estimate of the limit load in this analysis, where P-j_ is deter- 

mined by the yield condition at this critical point.  Hence we 

have 

^  \J    u2 PW        U-Q 

u is eliminated by means of equation (5).  This gives 
B 

P,£   Q o2 M     .'   Q 2~M~ 1  _ 8 t    _pwr  •, , y  C  P   -,-\ /1nN 

P      c  P   V     t      pw 

The yield condition remains to be checked in zone CF. 

We find when looking for extreme values that there are no 
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stationary points in the flange.  On the boundaries of the elas- 

tic region in the flange we have on one side the plastic region 

and on the other side the junction to the web. Because of the 

jump of the shear stresses at this junction the stresses in the 

web are more critical.  The yield function in the web also has 

maximum on the boundaries, i.e., z = 0 and z = c. At z =  0 we 

have 

$ 
CF 

22 ,££,2 
16 ^M  ; 

pw 

[(u/cr l]b1/b + 1\
2 

\[(u/c)J - IJbj/b + 1 

As u/c J> 1 $  has maximum for smallest possible u/c, i.e., 

u = c. But for this value we know from zone BC that the yield 

condition is satisfied. Hence we have to check at the flange- 

web junction.  We have at z = c 

,2  ?7 p. 2/Wc)
2 - l]bx/b   X

2 

$  = c + 22 (f£-)2/ i | 

u       Pw  \ [(u/c)J - l]bx/b + 1/ 

Equating <f>  = 1 yields the following equation in u/c: 
Or 

(U)3 - 1 + JL = iVS £S_ u /uf. _ -L 

or 

pw 

h 

V c 
(11) 

* -^(v)2(f) "2(1"^)(F 
?c_>2 (U)2 + (i „ Jb_)2 - o. + it <M pw 1 

The last equation shows that there are two or zero positive 

roots. We can get an approximate solution by considering the 

quantity a/c - 1 = e, which is assumed to be a small number as 
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compared to unity.  The equation becomes 

*I 

As i 3 v/5" Pc/M  may be of the same order as </e , we get in 

approximate form 

N   i,  M '  b. pw 

or 

E - i i'-i. rES-)2  JL + /r 9 /Pc ^2  b n2  /JLN
2
') 

The critical value, when yield just starts at one point, corres- 

ponds to vanishing of the radical, i.e., 

&-*$&, (13) 
pw 

located at the section where 

3 V13? 

In the cases of I-scctions of particular interest here b/b,/\/0,l, 

so that the assumption that e is small as compared to unity is 

satisfied. 

We now consider tlio beam loaded with the force P-, accord- 

ing to equation (10), Then elimination of P, between (10) and 

(13) gives an approximate value of the length of the beam, <L> 

for which the two critical points start to yield simultaneously. 

We obtain 

pw   1 
(1*0 
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On the other hand eliminating P, between the inequality (9) ? 

taken as an equation, and equation (10) gives 

£-^C3,£-l>. (15) 
pw 

Hence we have the following two conditions for the validity of 

this first part of the analysis: 

£ > -i   and  £ > _2 . 
c — c        c -- c 

It is interesting to compare these two values for standard I- 

beams.  Table 1 shows that for many common sections -t, > -t » 

This shews that the stresses at the flange-web junction play a 

decisive role even for relatively long beams. 

The influence of the shear stresses upon the limit 

moment is expressed by equation (10).  This influence is shown 

I in Fig.  9»  where Pn-l/M    is  plotted as function of -   ,/M    /M  . 
' XP c\/PwP 

2.  Beams of length so that £, >, %,  > ^_ and t  > tQ» 

We now consider beams that have a length shorter than 

-t]_. We retain the previous estimate of the limit load as the 

force P, according to equation (10).  The stress field must 

therefore be modified so that the yield condition  <!> < 1 is 

satisfied everywhere. We introduce second plastic regions in 

the web as shown in Fig. 7.  These regions are bounded by the 

curve v(x) and occupy the zone DE, where we assume, in this 

part of the analysis, that the cross-sections D and E are 

located between the cross-sections C and F. 
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There is no reason to change the previous stresses in 

the zones BD and EH of the beam.  The cross-sections D and E are 

determined by equation (11) or approximately by equation (12). 

The condition that the cross-section E will be located to the 

left of cross-section F is given by u£< a.  By means of equa- 

tions (8) and (11) this condition is 

t>^ = £[K^--£] (15) 
pw   ^ 

where 

K = || \h£  MM  . 
IY v b  Pw pf 

We also assume, as before, that Ug < c.  The bounds for the 

length of the beam for which this part of the analysis applies, 

therefore, are 

_1 > &  > .2  and I y  _o 
c—c— c C "~ c 

Now consider zonu DE.  Both the flange and the web are 

partly elastic, partly plastic.  In the plastic region of the 

flange we have as before ö  = Y, T _ = 0.  In the plastic region 

of the web we again relate- the stresses to each other by 

öx -• Y cos cc(x,z) and TXZ = SL  sin a(x,z).  If the boundary 

condition at the flange-web junction were given, we then could 

determine the stresses along the characteristics.  Therefore we 

consider a(x,c) = f(x) as a given function and express further 

quantities in terms of it0 

In the elastic region of the flange the assumption of 

linear variation of d  and of continuity of dv and T„„ across A X      xz 

the elastic plastic interface then yields 

'I 
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ö  _ (u - z) cos f + 2 - c Y. 
x a -  c 

The equilibrium equation (1) together with the boundary condition 

TXZ(X,U) = 0 gives 

The other boundary condition 

•c  (x,c) = -=r— sin f 
xz '   \/3 \ 

determines the function u(x) to within an arbitrary constant A, 

as follows: 

f'D 

(u - c)(l - cos f) = A + -2-fe—   sin f dx. 
vSb, j 

(IX 

The boundary condition u = u~ at cross-section D determines A 

so that I1 D 

2b !  sin f dx 
(un - c)(l - cos f(::n))     Jx 

u = c+-J> i—oTT -- + -7T— — •  (16) 
v/3 b1(l - cos f) 

But u is given also at section E. Hence we must impose one 

condition on the function f, namely 

2b "1 [(u -c)(l-cos f(xE))-(u^-c)(l-cos f(xD))] =   sin f dx. 

Jxj,    (17) 

This equation can also be derived as the equilibrium equation 

of forces in the x direction on the segment at the flange between 

D and E. 

In the second plastic region in the web the stresses are 

given along each characteristic. Hence d = Y cos f(x) and 
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TV~ = -£= sin f(x) where the value of x refers to the coordinate xz  /3 
of the characteristic at the flange-web junction, Fig. 10.  As 

before, the characteristics are straight lines in this case 

making the angle <p(x) to the z-direction.  In view of equation 

- i|£ = s/2  tan f = tan cp. ' 
dz (18) 

It is found convenient to denote the length of the characteris- 

tic by g(x) \/l + 2 sin2f(x). 

Now consider a "cross-section" of the beam tnat follows 

the characteristic in the second plastic region as shown in 

Fig. 10. ^e to the slope of the characteristic the center part 

of this "cross-section" has a coordinate, denoted by s, that 

differs from the coordinate x of the outer part of the "cross- 

section". The coordinates are related by 

s(x) = x + g(x) \/l + 2 sin f(x) sin cp(x) 

= x + x/3 g(x) sin f(x). 

The function v is now determined at s by 

. 2, v[s(x)] = c - g(x) \/l  + 2 sin f(x) cos cp(x) 

= c - g(x) cos f(x). 

Hence the assumptions of continuity and of linear variation of 

dx gives 

z cos f(x) 
dx[s(x)'zl = c - g(x) cos f(xT Y' 
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The equilibrium equation is 

dö      . 3T 
 x dx +  xz _ 0 
6x ds   3z 

This determines T  together with the boundary condition 

T  [S(X),C - g COS f(x)] = X sin f(x), 
XZ ^ 

We obtain 

+ (1 1 Wt.rf>.i»fh| 
(c - g cos f) 1 + /3 (g sin f) 

Now it remains to determine g(x) in terms of f(x).  As 

before we set up the equation of total moment, now taken with 

respect to the point (s,0).  The external moment is given by 

equation (10) as 

The plastic regions of the flanges contribute Mn 
JL 

M-L = (a2 - u2)b1Y. 

The elastic regions of the flanges contribute the moment M2 

which is made up of two parts M^  and Mp  arising from the 

tensile and shear stresses, respectively 

M2  = ^ (u - c)[2u + c + (u + 2c) cos fjb-LY 

l^2)  = - I g sin f[(u - c)2(l - cos f)]'b,Y 
s/3 

'i 
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M„ = J 1 (u - c)T2u + c + (u + 2c) cos f] 
2  13 

-Igsinf [(u- c)2(l - cos f)]' l bxY. 

The plastic regions of the weh contribute M-> which also consists 

of two parts, M^1' and M^  , from the two stresses, dx and TXZ 

respectively. 

M^  = (2c - g cos f)g cos2f bY 

(2) 2 
M,  = 2?c sin f bY 
3 

M   = (2gc - g cos3f)bY. 

Finally the elastic part of the web contributes M^ 

2 
3 ML. - % (° - s cos f) cos f bY* 

The moment equilibrium equation then becomes 

P s - M, + M» + M^ + M, . 
1    1   2   3   lf 

It is quadratic in g(x). We therefore obtain 

g(x) = A(x) - \/A2(x)   - B(x) (19) 

where ~ ?c
2 ^ \ 

- 3-J& _1— sin f + [2u +  ^ ^ (u - c)2f']sin2f 
2 M                2b           J 

A(X) =  EH : (20) 
cos3f 

2 P x - M f b 

3c -±— £ 2c cos f + -*k(u - c)(u + 2c) (1 - cos f) 

B(x) = pw 

cos f (21) 

I 
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To complete the analysis we must write conditions 

ensuring continuity of stresses at cross-sections D and E. The 

following requirements are imposed on the values of f(x) and 

f'(x) at D and E: 
! 

f(xn) = cos"
1 (-S-)j   f'(xn) = -5 .    (22) 

D uD 
D      r-2 2 

f(xE) = cos
-1 (-2.) 5   fl(*^ 

V 
E -     uE fig I C2 

The previous condition on f(x), (17), now takes the form 

(23) 

vO \   j(uE - c)
2  (uD - c)

2 1   ft 

2b   I   uE uD 
sin f dx.    (2l+) 

JXE 
Any function f(x) that fulfills these five boundary conditions, 

equations (22), (23) and (2U-), and produces plastic regions of 

the type assumed in Fig. 7 will define a statically admissible 

system of stresses within the framework of the assumptions we 

have made.  In the numerical example one  such function f(x) is 

chosen. 

3,  Beams of length so that £„ > t  > t  . 
 d —      —    o 

The beams treated in this part have such length and 

cross-section dimensions that the plastic region that started 

from the outer fiber extends into the web, and so that the second 

plastic region extends into the zone FH, see Fig, 8.  The length 

of the beam aiust therefore fulfill 
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One further condition should be mentioned namely the requirement 

that the cross-section G does not fall near the free end of the 

beam. 

The same stress field as before is used in the zones BF 

and GH,  The "cross-section" F is given by u„ = a, i.e., 

(u - c)2       r\D 

(a - c)(l - cos f(x„)) = — + _2]2— j sin f dx. (25) 
UD    v^ b. 

The cross-section G is determined by the yield condition in the 

web at z = c.  It is 

^"W** J 

pw 
so 

XG .     /I2Y2     a   M
r. 2 

~~ VP^"* Ci^}- (26) 
1 pw 

In the zone FG the flange is entirely elastic, I at the 

web contains the second plastic region. Fig. 8.  The stresses in 

the web are determined as before by the function f(x).  The 

expressions for the stresses in the web remain unchanged, so 

that in the plastic region of the web along each characteristic, 

Fig. 11 
d  = Y cos f,  T   - JL sin f x x. v- 

and in the elastic region of the web 
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Z       COS       f y 
öx      c - g  cos  f 

112      .     a       ri                    7
2              1 g'cos2f - cf'sin f "J 

•c_z - J 14 sin f + [1 § ^J 2 - I Y. 
X 1/3 (c _ g cos fT    1 +/3   (g sin f)'    J 

In the flange, which is in the elastic state, we let 

d have linear variation in z and be continuous at the flange- 
x 

web junction.  This gives 

(a - z) cos f + (z - c)h 
ö = ——————————— y 
x a - c 

where we denote d (x,a) = Yh(x). The function h(x) will be found 

in terms of f(x). The equilibrium equation (1) together with the 

boundary condition t    (x,a) = 0 determines 

x      =  ,a " z,   [(a + z - 2c)h* - (a - z)f» sin f]y. 
XZ   i-\S "" C) 

The boundary condition for T  at the flange-web junction deter- 

mines h(x).  We have in the flange 

T     (x,c)  = i (a - c)(h«   - f«   sin f)Y =      b? • sin f. 2 /Jb-, 
x 

Henct 2b   j'      sin f dx 
h = B -  cos  f + 

N/S bx(a - c) 

The constant B is determined from the condition of continuity of 

ö at the section G. We obtain 

X 
1 

P-.C M 
2
M 2b   sin f dx 

h = (Ä + 1) i/ 1 - 4C ~) - cos f +  iL2   (27) 
V       J'x pw V3  b]_(a - c) 

i 

i 
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But the tensile stress is also given at the section F. This 

imposes the following condition on f(x): 

-^— [(a - c)(l - cos f(xF)) 

22/     P-, c M -     f. F 

- ~c"— l/1 " £ (W"H)2] =!  sin f dx« (28) 

JXG 
This condition is equivalent to equation (17) applying to zone 

DE.  It also expresses the requirement of the equilibrium of the 

forces in the x-direction for the segment of the flange between 

F and G. 

We now determine the function g(x) by the overall moment 

equilibrium equation with respect to the point (s,0)? Fig, 11» 

As before, the external moment is 

P s = § &§ M  (,'l + 1  c JE-. -. i). 
1   9 7 pw '\i $ J>Mpw  — 

The contributions to the moment from stresses in the web are 

as given in the previous section, namely 

M = (2gc - g2cos3f)bY 

M^. = I (c - g cos f)2cos f bY. 

The flange contributes the moment Mp, which consists of two 

parts, Mp  and M^2', arising 

shear stresses, respectively: 

parts, Mp  and M^2', arising from the tensile stresses and the 
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M^3-) =1 (a - c)[(a + 2c) cos f + (2a + c)h]b1Y 

M<2) = g ^in f (a - c)2 (2h + cos f)' bxY 

M2  = I (a - c)[(a + 2c) cos f + (2a + c)h 

+ v^ (a - c)g sin f(2h + cos f^^Y. 

As before the moment equilibrium equation 

P1s = M2 + i-L i- K 

determines g(x) so that 

n— 
g(x)   = A -    VA     - B (29) 

where - p    2 rr b 

C " "2      M^~ Sin f  + [2a +       2b X   (a " c)2 f ,]sln f 

A(x)   =  22 (30) 
cos-^f 

3c2 -i 2c2cos  f - _i(a-c)[(a+2c)cos  f+(2a+c)h] 
M b 

B(x) =  V-  (3D 
cos-^f 

As before, we must check that the stresses are continuous 

at the cross-sections F and G.  The stresses at section F are 

given on both sides of the cross-section in terms of f(x). 

Hence f(x) must be continuous and have a continuous first de- 

rivative at x_.  Continuity of the shear stresses at F imposes 

".1 nr\ . narnpl v ti 
F 

one more condition, namely u = 0.  In terms of f(x) this 

condition takes the form 

i 
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M 
f» (X ) = „ JL  a + c _£± ,~2) F     ^      c2 V 

At section G the continuity of stresses requires 

T V3 Pn c2M ~               2M 
f(xQ) = sin"

1 _i 21.   ft(x ) = 2SL-.   (33) 
2IY M G      A- w pw /3c Mpf 

Any function f(x) that fulfills the four conditions (28), (32) 

and (33) and produces stresses of the type assumed in Fig. 8 

will, within our assumptions, produce a statically admissible 

stress field. Note that the position of section F and the value 

of the function f(x) at F are not determined by the stress con- 

ditions. These values may be chosen so that the numerical 

calculations become as simple as possible.  It will be convenient 

to assign a value for x„ at the very beginning of the computa- 

tion.  Thereafter we construct a stress field in the zone FG by 

using an f(x) that fulfills the conditions (28), (32) and (33). 

We then finish the problem in dealing with the zone DF, i.e., 

we choose an f(x) that fulfills conditions (22), (2^) and the 

values of f(x„) and f»(xp) that are obtained from zone FG.  The 

third numerical example in the following section is computed 

according to this scheme, 

h.    Numerical examples. 

In this section an outline is shown of the computations 

that determine the shape of the plastic regions for three special 

cases all applied to an 8 WF i+0 beam.  The numerical values of 

the different quantities are given to as many as six significant 

figures, although of course for practical problems such precision 

5| 
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is meaningless.  It is necessary in certain cases to carry this 

number of significant figures in order to show some of the prop- 

erties of the analysis. 

We have chosen in oui examples one of the beams listed 

in Table 1,  This table shows the computed lengths «t , t    and 

£? for some beam sections which have been subjected to labora- 

tory tests [11], [12], [13]j and for a few other common beam 

sections.  From these beams the 8 WF h-0  section has been chosen 

fur detailed discussion because it has a large value of the 

ratios M_/M  and bn/b.  The cross-section dimensions are given p    pw     ± 

in Table 1. We compute three examples, choosing the length of 

the beam so that one example is provided for each part of the 

analysis. 

In the first example we consider the shortest possible 

8 WF M3 beam in v/hich the second plastic region does not appear. 

Table 1 gives -L/c = 21.1, and we therefore take I/o  = 21.1 for 

the first example. The estimate for the limit load in this case 

is given by equation (10) as P-j^/M = O.9895.  The beam contains 

the zones BC, CF and FH where xc/c = 20.^, (Eq. 6), and 

xF/c = 19.02, (Eq. 8).  The elastic-plastic interface is computed 

in the zones BC and CF according to equations (5) and (7),  The 

results are shown in Table 2 and in Fig. 12. 

In the second example we choose the length £/c so that 

l-^/c   < Vc < £2/c.  We take l/c  = 12.5356,  (The actual choice 

was to make uß/c = 0.85 exactly.) The estimate for the limit 

load is given by equation (10) as P^/M = 0.9715.  The beam is 

divided into the zones BC, CD, DE, EF and FH according to Fig, 7. 
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The elastic-plastic interface in zone BC is given by equation 

(5).  The results are shown in Table 3»  Equation (6) gives 

x /c = 12.39^+2,  The cross-sections x^/c and x^/c are determined 

from u_/c and u7Vc in the following way,  Eauation (12) deter- 
U til 

mines approximately 

u /c - 1 = 0.00176:  u^/c - 1 = 0.129. 

Using equation (11) we obtain the more accurate values 

u_/c - 1 = 0.00175?  U_/c - 1 = O.lM-256. 
i-' E 

Equation (7) then gives 

x/c = 12.3921;     x/c = 11.6367. 
D & 

Cross-section F is determined by equation (8) as 

x_/c = 11.507^. 
r 

The zones CD and EF become so narrow that the boundary values 

of u/c are sufficient to determine the elastic-plastic interface 

in these zones.  We therefore now focus our attention on zone DE. 

In order to construct a solution in zone DE we need to 

determine the function f(x).  This is restricted only by the 

boundary conditions, which are 

f (12.3921c) -  0.059175  f (12.3921c) = - l»+.88l/c    (22a) 

f (11.6367c) = 0.50*f88?  f (11.6367c) a - 0.17083/c   (23a) 

and 
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12.3921c 

sin f dx = 0.3l+083c. 

ll.v6367c 

(2*fa) 

We must therefore choose a certain form of the function f(x), 

this choice containing five arbitrary constants so that the 

above conditions can be satisfied. Note that even if the above 

conditions are satisfied the choice of f(x) may not be satis- 

factory due to the fact that the results may not agree with the 

general type of solution assumed in Fig. 7.     E.g., the function 

v(x) may become parallel at a point with the z-axis or it may 

become larger than c at some point. Both cases must be avoided, 

For the choice of f(x) in this case we notice that fl(xß) is 

numerically large.  This can be taken account of conveniently 

by choosing the f(x) basically as a parabola with the axis 

parallel to the x-axis and the vertex near xD,  This suggests 

the introduction of the new variable y and also of the square 

root as follows: 

y = 12.3921 + k - * 

and f(y) =A + BN/y + Cy + Dy . 

The five constants k, A, B, C and D are to be determined.  The 

conditions become now 

f(k) = 0.05917; f'OO = m-,881 

f(k + 0.759+) =  0.50^885  f(k + 0.755^) = 0.17083 

and 
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k+0.759+ 
P 

sin f dy = 0.3l+083. 

k 

Prime denotes differentiation with respect to y.  These con- 

ditions give 

k = 0.005^5  A = - 0,1180;  B = 2.6378; 

C = - 3.0663?  D - 1.13W. 

The function f is shown in Fig. 13.  Equations (16), (18) and 

(19) determine u, 9 and g; see Table h.     The plastic regions are 

shown in Fig. ih. 

As the third example cox^sider the shortest possible 

length for which the previous analysis applies, i.e., 

£/c = «cVc = 10.531+92.  Very similar considerations apply in 

this case as compared to the foregoing example.  The presenta- 

tion is therefore shortened. We have the zones CD, DF> FG and 

GH as in Fig. 8.  In this case equation (10) gives P-JVM := 0.9605. 

Equation (12) gives u /c - 1 = 0.00119 and from equation (11) 

uD/c - 1 = 0.001185. Equations (7) and (26) give xD/c = 10.53385 

and xQ/c = 9.29002.  Conditions (22), (32) and (33) ares 

f(10.53385c) = 0,0^865;  f»(10.53385c) = - 22.011/c (22b) 

f'(xF) = . 0.33^8/c (32b) 

f (9.29002c) = 0.60659;   f« (9.29002c) = - o.l55iI+/c. (33b) 

Conditions (2h)  and (28) give 

i 
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sin f dx = 0.6835^ (2>+b)  +  (28b) 

9.29002c 

XF 
sin f dx = 2.9898 [cos f(xp) - 0.77136].  (28b) 

9.29002c 

In this example the cross-section F is arbitrarily chosen. We 

take xF = 9.5. 

In zone FG we let 

f = 0.60659 - 0.155ll+y + Ay2  + By3 

where 
y = x/c  -  9.29OO2. 

The conditions (33b) are satisfied whilf A and B are 

determined by (28b) and (32b).  The constants become A = l+,196lf 

and B = - 1U-.679. The equations (18), (27) and (29) determine 

9, h and g in zone FG, see Table 5. 

In zone DF we have the following conditions on f(x) 

f (10.53385c) = 0.0^-865$  f (10.53385c) = - 22.011/c 

f(9.5c) = 0.6231I+;      f'(9.5c) = - 0.33^8/c 

and 
10.53385c 

1 

Now choose 

where 

sin f dx = 0.56189c 

u9.5c 

f = A + E Vy +  Cy + Dy 
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y = 10.53385 + k - x/c. 

The above five conditions determine k = 0.00171, A = - 0.02903, 

B = 1.93656, C = - l.'fOM+S and D = 0.11020.  Equations (16), 

(18) and (19) determine u, y  and g in zone DF, see Table 6. 

The function f and the plastic regions for this third example 

are shown in Figs. 15 and 16. 

D.  A second example of an approximate statically admissible 

stress field. 

The results of the previous analysis in this paper show 

that for beams that have a length ratio greater than tQ/c  the 

reduction of the limit moment is at most of order 10%.  Ex- 

amples of these reductions are given in Table 1 in the column 

that shows the value of P-,£/M for beams having the length ratio 

-L0/c.  The cases where shear stresses become important therefore 

are expected to occur for beams that have length shorter than 

/L0»  A considerable reduction in the maximum end load of a 

built-in I-beam may take place when the beam becomes so short 

that the shear capacity of the web is not sufficient to balance 

the longitudinal force in the flanges.  A failure, as depicted 

in Fig. 17, may then happen. As cross-sections no longer re- 

main plane and normal to the center-line we can assume that the 

web carries a small amount of the longitudinal stresses so that 

in the web the shear stresses neaüy reach their yield-value. 

We shall now construct a statically admissible stress field for 

this case -- starting with the same assumptions as before — 

where this stress field is based on the failure of the web in 
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pure shear.  As depicted in Fig. 18 let the stress field be 

composed as follows: 

Y 
ö=0» x  ~  ~ in the weD x   > xz  ^3 

bxY             b(a - z)Y   .  ,,  „n cJ =  =^± 5 x      = —--  in the flange. 
x  v/5 Va -  c)   XZ  /3 bx(a - c) 

The equilibrium condition (1) is satisfied everywhere and the 

yield condition (2) is obviously satisfied in the web.  At the 

flange-web junction the shear stresses are in equilibrium in the 

same sense as before, and the longitudinal stresses are discon- 

tinuous. Such a discontinuity is permissible in the construction 

of a statically admissible stress field, see [lU-],  This stress 

field is valid when the yield condition (?) is not violated in 

the flanges.  The yield condition in the flange takes the form 

-,2    r -i? 
+ 3 1 _b(a - z? I'   £lt 

|/3 bx(a - c)J     \ys  bl(a - c)j 

The left-hand side has its maximum value at x = k,  and z = c. 

The yield condition will therefore be satisfied for beams having 

a length h <    -L where -t is obtained from the following equa- 

tion; 
r    bt,        -12       -     -2 
\——i   +3:-^—i =i 
\/7 b1(a - c)      V3 b-J 

L J      -    j 
or 

£3/0 = /3 Ca/c - l)\/(b1/b) - 1. (3*+) 

This length is computed and shown in Table 1.  The estimate of 

the maximum total shear force, Pp, becomes in this case 

ni 

I 



Ai]-107 

P0 = 2bc -J + (a - c)b -^ = 4: (a + c)bY. 

Therefore 

IfO 

•3 /3  73 

Pp£   -i M 
_L.   1 (a/c + l)^c^w. (35) 
p   Vj p 

The above stress field suggests a more general field as 
| . 

depicted in Fig. 1?»  We let 

d = to, X Y;  T^„ = to, a " 2 Y in the flange 

dv = kP X Y:  TV„ = k2 S = 
z Y + kn  1 (a _ i)y in the web. X     c-    c   '     X<S     ^    c Dc 

We assume that the two constants k-, and kp are non-negative. The 

equilibrium condition (1) is satisfied everywhere in the same 

sense as before.  The yield condition must be checked in the 

flange and the web. We let k, and k? be so determined that the        hg 

yield condition is simultaneously satisfied at the most critical 

points both in the flange and in the web.  In the flange this 

point is x = t  and z -• c.  The following equation therefore 

determines k-j_: 

(kxVc)
2 + 3 [kiCa/c - l)]2 = 1 

kl = 

\/(Vc)2 + 3(a/c - l)2 

In the web the critical point is x = t  and z = 0. We therefore 

choose kp so that 

(k2Vc)2 + 3[k2 + k1b1/b(a/c - l)]2 = 1 

k„        rz 
—^ s     ytf  + B -  A 
kl 
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where 

A = 3 bx/b • a/c - I 
(I/o)    + 3 

B - 
(Vc)2 - 3(a/c - l)2[('b1/b)

2 - 1] 

(Vc)2 + 3 

The condition k^ > 0 is satisfied but the condition kp > 0 shows 

that B > 0, and this restricts the length of the beam.  This 

restriction is 

I/o  > /3" (a/c - 1) \ (b-j/b)2 - 1 = £ /c.       (36) 

This stress field together with the previous one therefore 

applies to any length of the beam.  The total shear force now 

becomes 

P? = k-^a/c - l)(a - c)b1Y + 2k1(a/c - Db-^Y + k2bcY. 

Therefore 

Mg- = Mm£|{klt(a/c) - 1)]bl/b + k2]-      C37) 

Within our assumptions equations (35) and (37) provide a lower 

bound for the limit load.  The curve of P2^
/M

T) versus t/c  has 

been computed for the 8 WF hO  section.  The result is shown in 

Table 7 and in Fig. 21. 

In this stress field the assumption that d vanishes is 

strictly valid. This is true because the shear stresses are 

independent of x so that the equilibrium equation invol/ing ö 

is identically satisfied.  The stress fields that we have con- 

structed give a lower bound for the collapse load.  In the next 

I 
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section we shall obtain an upper bound which will be applicable 

for short beams. 

E.  A kinematicallv admissible velocity fjeld for short beams. 

We shall now make use of the second limit analysis 

theorem of Drucker. Prager and Greenberg [i^jj which states 

that a load obtained in a definite manner from a kinematically 

admissible velocity field is an upper bound for the collapse 

load.  A velocity field is defined as kinematically admissible 

when it satisfies the imposed velocity conditions at the bound- 

ary of the body and when the velocities vanish on those parts 

of the boundary where the surface tractions are not prescribed. 

In this paper v/e consider only velocity fields which are con- 

tinuous and satisfy the condition of incompressibility 

9u + 2i + ätt = o 
3x  öy  3z 

where u, v and w are the velocity components in the x,y and z 

directions.  The upper bound P* of the load is obtained by 

equating the rate of work produced by the applied forces to the 

rate of plastic work in the body. 

It seems intuitively likely that a reasonable upper 

bound of the collapse load should be such that the value 

P*£/M = 1 is exceeded by only a small amount, if at all.  For 

moderately long I-beams we have only been able to construct 

velocity fields that give P*t/M_ considerably larger than unity. 

V/e therefore confine attention to short beams inhere a "good" 

velocity field is easily obtained and restrict ourselves to the 
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length of the beams so that P*t/M < 1.  The velocity field 

that is chosen is depicted in Fig. 20.  It is symmetric with 

respect to the middle surface OFG. Part ABFG is rigid and 

fixed. The part BCDE of the flange is rigid and rotates with 

the angular velocity w about the fixed point B. In part ABC 

of the flange let 

u = w = -i-uj(<t— x-a + z);  v = 0. 

This is a motion parallel to AB, with velocities continuous on 

AB and BC.  In part BEOF of the web let 

u = v = O5  w= -u>(-i-x-a + c). 

The velocity is continuous on BE and the motion is parallel to 

BF.  As before we use the von Mises yield condition and there- 

fore also the von Mises flow rule. We have constructed a plane 

velocity field.  The rate of plastic work, W , for such fields 

is derived in [51> page 21^, 

Y P' w B -~ rdv 
P  /3 i 

ü  . 
where dV is the volume element and V  is given by 

r =  [(|ü - |K)2  +   (|u + W]1/2
# 3x       dzJ dz       dxJ 

We obtain both in ABC and BEOF 

r = M. 

The rate of plastic work therefore is 

W =^YW[V   + VBE0F] 
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W_ = -f= M w[b./b(a/c - l)2 + I/o  - a/c + ll. 
P  yj pw  1 

The rate of external work is W 

We = P*w(£ - a + c). 

The limit analysis theorem therefore gives the following upper 

•bound for the limit moment 

,2    ^ 

i 

P*J>   p M•^ Vb./bCa/c - 1)' 

P*-t/M becomes unity for 

/~2  
Vc = A + \jk    -  B 

where 

A = J [ V3  M /M  - 2b,/b (a/c - l)2 + 2(a/c - 1)] 
H-        P  pW     X 

and 
B = v5 M /M  (a/c - 1). 

•i  P  nw pw 

This upper bound, computed for the 8 WF hO  section, is shown in 

Table 7 and plotted in Fig. 21 as a function of l/c,  It is seen 

that the curve for the upper bound load P* lies parallel to 

and only slightly higher than that for the lower bound load ?2 

corresponding to shear failure in the web. 

F.  On the relations between experiments and theory. 

The example of the curve Pp-fc/M versus t/c  in Fig. 21 c       p 

clearly shows that the theory predicts a certain length ratio 

of the beam below which the load carrying capacity of the beam 

decreases abruptly, because of shear failure of the web.  This 

critical length ratio is -W/c.  In the following comparison we 
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therefore look first for the appearance of such a critical 

length ratio in the experiments, and, when observed, we compare 

the values of the experimental and the theoretical length ratios. 

Secondly we want obviously to compare the experimental 

and theoretical values of the limit moment in each case.  The 

theoretical values are given by equations (35) > (37) (which 

furnish lower bounds) and (33) (which gives an upper bound, 

valid for short beams).  In the following experimental data from 

three sources are considered.  In the paper by Johnston, Yang 

and Beedle [13] shear failures in the web of I-beams are re- 

ported, but details concerning the length ratios and limit 

moment values are not given.  Baker and Roderick [11] made an 

investigation of the influence of shear on the limit moment of        iVi 

a particular beam section and presented the results in the form        " 

of load-deflection curves from which the variation of limit 

moment with length ratio can' be studied,  Hendry [12] has dis- 

cussed tests on a series of beams of different cross-sections 

and gives the results in a table where the limit moment was 

defined by deflection considerations.  Adopting his definition 

of limit moment companions are made in this section between 

the experimental results and the theoretical predictions both 

as to critical length ratio and magnitude of limit moment. 

In the eighth Progress Report from Lehigh University 

[13] two examples of beams are shown where the collapse of the 

beams was apparently caused by shear failure in the web. The 

first example is a k  I 7»7 beam that is simply supported and 

loaded symmetrically by two concentrated forces.  Each end of 
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the beam can therefore be represented by the cantilever problem 

discussed in this paper. The length ratio £/c in the test is 

approximately 2,5.  In the theory equation (3*+) gives Zr>/c =2,5, 

as shown in Table 1» 

In the second example an 8 WF kO  beam is loaded so that 

moments numerically equal but opposite in sense act at the ends 

of the half-beam, whose length ratio was approximately 16, 

Because of the symmetrical properties of the load each quarter 

of the span can be represented by the cantilever beam«  The 

effective length ratio therefore is £/c =8. For this case we 

compute 4U/C = 6.0. 

The ratio between the collapse moment and the fully 

plastic moment is not stated for these two examples.  The tests 

show that shear failure in the web is important for beams hav- 

ing the above cross-sections and the effective length ratio 

approximately £-Vc. 

Simply supported beams acted upon by two concentrated 

loads, symmetrically spaced, have been investigated and re- 

ported by Baker and Roderick [11]» The beam is a British Bi- 

section with dimensions l-^-" x 1-p. The distance between the 

loads was kept constant and the span was varied.  Different 

effective length ratios of the corresponding cantilever beam 

problem were therefore obtained, varying from 9.*+ (Test No. SB. 

21) to 2.2 (Test No. SR 11).  The value of I  /c is 6.7.  The 

load-deflection curves are given» For length ratios greater 

than 3.9 the curves show a well defined "bend" where the slope 

of the curve rapidly decreases.  The load at these "bends" is 

! 
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taken as the collapse load in Table 8 and Fig. 22,  The table 

and the figure show that in  the experiment v/hen the length ratio 

is smaller than S*5  the collapse moment decreases rapidly with 

further decrease in length ratio.  In the theory we have 

t^/c  = 6,7 below which V^-M   decreases rapidly. 

In the paper by Hendry [12] the influence of shear 

forces in simply supported beams of various I-sections is dis- 

cussed.  In these tests a concentrated load acts on the mid- 

point of the beam.  A series of tests is also included in which 

the influence of shear stresses In the beam of a portal is 

investigated.  The value of M/Mp is tabulated in the paper, 

where the moment M is obtained from the load at which the 

deflection of the beam equals 1/50 of the span.  These values 

are shown in Table 9 and Figs. 23 and 2h  together with the 

theoretical values of P-t/M . Except for the portals and the 

beam 3^ we see that M/M is in the neighborhood of and is great- 

er than Pp-t/M .  We notice moreover that for length ratios 

shorter than <--Vc the value M/M is considerably less than 

unity. 

The portals Bl - B5 are made up of a 3" x 1" beam and 

of l-p x 1" stanchions.  The ratio of the fully plastic moment 

of the beam to that of the stanchion is approximately 7,3 to 1, 

The effective length ratio t/c  is therefore taken to be 

- 2JL3  (VC)* = 0,38 U/c)* where (l/c)*  is the length ratio 
/ • 3 "*" J- 

between the load and the end of the beam.  The results in Table 

9 show that the portals did not develop the moment Pp-t/M • 
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In [12] the large reduction of the limit moment is explained 

by the influence of the axial stresses in the columns. 

In general we see that the theory and experimental 

tests agree rather well, with very few exceptions.  For this 

comparison between the experiments and the theory we have used 

the results obtained by the second type of stress field.  This 

is done because the length ratio is in these cases so short that 

the first type of stress field does not apply, 

G.  Summary and conclusions. 

The two types of stress field in this paper each give 

an approximate lov/er bound for the true collapse load of the 

plastic bending of a cantilever I-beam.  The approximations 

consist in both cases of a two-dimensional formulation of the 

problem while in the first type of stress field the further 

assumption is made that the d„ stress is negligiblee  The veloc- 

ity field, which is applied for short beams, gives results 

which are upper bounds to the true collapse load.  The velocity 

field satisfies all the requirements of the appropriate theorem 

of limit analysis. The upper and lower bounds differ by small 

amounts for short beams.  For long beams the lower bounds fur- 

nished by both types of stress field tend toward the result 

PVM = 1. 

The ratio P2VM , v/here Pp is the lower bound on the 

collapse load defined in Section D, can be used to estimate 

the limit moment MQ = ?2^ ^-n ^he  relation to the fully plasitc 

moment NL which is appropriate for pure bending (or very long 
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cantilevers). We note that the curve of P2VM as function of 

Vc has two distinct parts, as exemplified by the curves of 

Figs. 21 - 2h,     For l/c   < ^/c  it is a straight line through 

the origin with the slope a/c ±  -1— ,  For l/a  > l^/o  the value 

^ VV 
of Pp-i/M increases asymptotically to the value P2-i/M = 1. 

The reduction of the limit moment at the length ratio £3/0 may 

be as high as 30$ for the beams mentioned in Table 1.  The 

curves show that a much larger reduction of the limit moment 

takes place when the length ratio is less than -i-Vc? but for 

beams having a length ratio greater than -L-Vc the fully plastle 

moment is generally reduced by a relatively small amount.  Table 

1 also shows that the value of -v-Vc in some cases is so short 

that in the practical problem the effects of the details of the 

end constraint or of the loading are very important.  It is 

therefore suggested that beams should not be used whose length 

ratio is smaller than -t-Vc or which are so short that the end 

effects are important.  For example, if Z/c  < 6 treatment as a 

"beam" in the conventional sense is hardly appropriate. 

The influence of buckling, particularly of the web or 

the flange, (or both), is disregarded in this paper.  This may 

be important for certain short beams, as indicated in [13], 

and should be further investigated. 
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x/c  21.1       21.0       20.9       20.8      J20.7       20.6      120.5 
| < * 

u/c! 0.515   0.619' 0.709, 0.788 I 0.860j 0.927:  O.989 

20.^+8 

1.001 

x 

X/c !20.V     120.2      120.0     119.8 
I 
u/c!   1.027 1  1.059     1.082!   1.100 

19.6       19.k     ;19«2 

1.1161  I.131!   l.l1+5 

19.02 

1.156 

Table  2.     The function u/c for 

8 WF kO section:-t/c = 21.1 

! x/c 

I u/c 

12.5356 

0.85 

12.5 

O.8901 

T 

12.»+5 

0.9^36 

12.39^2 

1,0000 

Table 3.     The function u/c In zone BC for 

8 WF jjhO section:-i/c = 12.5356 
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x/c v 

12,3921    j   0.0054 

12.3875 • 0.01 

12.3775    0.02 

12.3675 0.03 

12.3575 • 0.04 

12.3475 \ 0.05 

u/c 9 
1 / 2~ 
1  g/c g/c ./l+2sin f 

•4- 

0.05917 j 1.00175j 5.9° jo.0000 

0.11504 ! 1.0036 ! 11.30 lo.ooii 

0.19390 i 1.0056      18.80   io.0079 

12.3275 : 0.07 

12.2975 • 0.1 

12.2475 i 0.15 

0.24759 

0.28835 

0.32094 

1.0072 

1.0087 

1.0101 

23.6° 

27.2° 

29.9° 

; 0.0166 

:0.0250 

i 0.0344 

0.0000 

0.0011 

0.0082 

0,0176 

0.0270 

0.0377 

0.37032 

0.42025 

j 0.46845 

I 1.0128 

i 1.0169 

' 1.0241 

33.9° 

38.5° 

41.20 

0.0497 

0.0666 

0.0814 

0.0573 

0.0769 

0.0966 

12.1975 ! 0.2 

12.0975 : 0.3 

11.9975 0.4 

0.49291 

0.50793 

0.50408 

1.0319 

1.0500 

1.0711 

42.9° 

44.0° 

43.7° 

0.0852 i 0.1025 

0.0744 

0.0536 

0.0903 

0.0649 

11.8975 0.5 

11.7975 ;0.6 

11.6975 ' 0.7 

0.49631 

0.49235 

0.49679 

1.0940 

1.1163 

1.1347 

43.2° 
1 

; 42.9° 

! 43.2° 

0.0317 : 0.0383 

0.0139 j 0.0167 

0.0031 O.OO38 

11.6367 ;0.7608 j 0.50488 ; 1.1426 » 43.7° ;0.0000 0.0000 

Table 4.     The functions  f.  u/c.  cp and  g/c  In zone DE 

for 8 WF 40 section; l/c = 12.53 56 

i 



I 

All-107 55 

!             1 
x/c          y 

L 

       ! 

f h 9 g/c g/ci/l+2sin2f 

I 
9.2900 j 0 0.60659 0.9^976 50.20 0 0 

9.3^00  ; 0.05 
i 

0.607^9 0.95982 50.3° 0.0057 0.0073 

9.39C0 j 0.1 O.6I836 0.97569 | 51.0° 0.0167 0.0216 

9.^00  10.15 0.62820 0.99119 j 51.5° 1 0.0268 0.03^9 

9.^900  i 0.2 
1 

0.62599 0,99972 \ 5i.k° 
1 

0.0307 0.0399 

9.50   j0.2100 0.623m- 1.00000 !: 51.2° 0,0301 0.0390 

Table 5.  The functions f. hT 9 and g/c in zone FG 

for 8 WF ^0 section: l/c  = 10.53^92 

l/c   j  26 2k   I  22 20 18 !  16 Ih   j 12 10,5 

P^/M io.993 
1  P; 

P2-t/M ;0.995 

0.992jO.990 

0.99>+'0.993 

0.988 ;o.986;0.982iO.977iO.969 0.961 

0.991 to.98910.986 0.982 0.975 I 0.968 

l/c        10 7 !  5,97' 1+ 3 

P0<t/M   (0.961+ d      P ! 
P*^/M 

0.95510.9^2 0.922jo.881 0,737 o.590io.^2 

—   !0.892 0,760 0.62^ 0.M+8 

0.29!+ 

0.353 

Table  7.     The values  of P,£/M  , 
 1       P 

P^i/M    and P*t/M_ for 8 WF ho section 
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x/c 

56 

10.53385 

10.52556 

u/c 

0.00171 jO. 01+86 5 1.00118 

0.01 

9 g/c        g/c0. + 2sin2f 

If, 8° 10.0000 

10. 51556'0.02 

;0.15059 ll.00391:1!+.7° :0,0027 
1 i ! ;0.21675 ;1.00p?7j20.9°;o.0086 

10.50556|0.03 

10.1+9556 

10.1+8556 

0,0»+ 

0.05 

i0.26>f27|l.0C76l 
j I 
; 0.30210 n.00905 

25.1° |0.0159 

28A0!0.0236 

:0,33378(1.OI038J31 ,0°!o.03l6 

10.1+6556 0.07 

10.1+3556 !0.10 

10,1+0556! 0.13 

0.3850^11.01283135.1° o.Qi+75 

O.M+292 1.01626 39,l+oj0.0698 
j 1 

; 0.1+8661+ 1.01956 1+2.5°' 0.0892 

10.37556 

10.33556 

0.16       JO. 52087 1.02282^.1+.80 0.1051 
! I 

0.20      ! 0.55613! 1.02718! 1+7.I °i 0.1211 

10.28556 0.25      10.58816 I.03278h+9,10 0.13^1 

10.23556 0.30 

10.l8556'o.35 

! 0.6101+0 j 1.03865 

! 0.62 529 'l.0>+l+88 

50,5° 

51.3° 

0.11+09 

0.11+26 

10.13556 

10.03556 

0.1+0      !0.63i+1+3il«05l53i51»9o > O.li+OO 

0.50      JO.6398III.0661+0' 52.2° 

9.93556 0.60      jo.633^8 1.08367 

9.83556 0.70       I0.62103i1.10313 

51.8° 

51.1° 

0.1250 

10.1010 
1 

0.0701+ 

9.73556!0.80 

9.63556 O.90 

9.53556J1.00 

0.6081+0 I.121+31 50.3° 

0.60268 II.IV3I+6 
I 

0.61325Ü.15507 

50.00 

50.6° 

Ü.Oi+68    : 

j 
,0.0281+    ! 

i 

10.0257 I 

9.50000j1.03556 0.62311+;l.l5606J5l.2O  io.0309 

0.0000 

0.0027 

0.0090 

0.0169 

0.0256 

O.03M8 

0.0538 

0.0817 

0.1069 

0.1281+ 

0.1511 

0.1705 

0.1811+ 

0.1851 

0.1827 

0.1636 

0.1317 

0.0912 

0.0602 

0.0361+ 

0.0331 

o.oi+oo 

Table 6.  The functions f. u/c, 9 and g/c in zone DF 
for 8 WF M-0 suction; I/o  ="TÖT53'+92 

I 
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Test No, !   * 
i 

... 

l/c 

i 

2W VI/c Pwt/M d      P 
?*k/M 

P 

SR 21 U.25 9M 2.05 9.68 0.918 > 1 

20 !   3.75 8.33 2.30 9.58 0.90^f > 1 

19 !   3.25 7.22 2.65 9.57 0.881 0.9^9 

22 3.00 6.67 2,85 9.50 0.857 0.891 

17 i   2.75 6.11 3.05 9.32 0.785 0.831 

16 :   2.50 5.56 3.30 9.17 0.715 0.773 

15 !,   2.25 5.CO 3>15 ; 7.88 0.6^3 0.715 

10 2.00 h.kk 3.15 6.99 0.571 0.656 

i>+ 1.75 
i 
i 

3»&9 3.30 1 6.^2 
i 
i 

Oe500 0.600 

Table 8. The tests by Baker and Roderick 
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1 

Beam No,  j Section 
! 

—r 
1 

i 

I 
p2VMpi P*-t/M 

P 
M/M 

la        j ;i5 
i 

i 9.1 0.973 > 1 0.95 

b         j h" x 3" R.S.J. 12 7.3 ! 0.953 > 1 1;00 

c i3/c = if. 5 9 ! 5.5 i 0.909 > 1 1.00 
1 

d !   6 
i 

i 

i 3.6 ! 0.68^+ 0.719 0.83 

e ; "•• 

1 

5: 2.7 ' 0.511 0.565 0.71 

2a 1 12 
i 

9.6 0.979 > l •   1.00 

b 3"  x li"R.S.J. 
1 

1    7. 5 6.0 0.9^1 > l 0,97 

c •tU/c = 3«2 : 5 k*Q i 0.869 0.995 1 
:   0.88 

d       ; 3 
i 

1 

i 
2.^ 0.598 0.636 •  0.59 

3a 3"   X 1"   R.S.J. 1   9 1 7.2 0.967 ;   > 1 
i 

|  0.96 

b -L/c - 2.1 ; h 
i 

3.2 0.81+7 > l 0.73 

3c |io 7.0 0.966 
i 

! > i 
i 

.  1.00 

d 3" x 1»  I 1   7 M 0,929 
i 
i > i ; 0.87 

e £3/c = 2.1 !   5. 5 3.9 0.839 : > i 0.86 

f     i Portals :   •+ 2.8 o,8m- ; o.98 i 0.61 

g Bl  - B5 ;   h 2.8 0.81H- ! 0.98 0.76 
: 

ha ! 10 20 
t 

0.993 ; > 1 | 1.00 

b li"  x 1"   I i    ^ 10 i 0.975 ; > l !  1.00 

c £3/c  s 3,If 
i 

i   3 6 1 0.93^ 
i 

i > l | 0.97 

d 1. 5 3 0.705 • o,yhh | 0.76 
i 

Table  9. The  t GJ sts bv Hendrv 
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18 C F H 
Fig. S The shape of th«> plastic regions forJi^and i>£^ 

^B     CD        EF H 

Fig.7 The shape of the plastic regions for^^/^and J>^ 

yß CD 

^S C D F      6 H 

Fig. 8 The shape of the plastic regions for i2* ^ *-4> 
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Fig.9. The ratio P,i/MD of the first type of stress field 
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Xcos I 

7 

vanish 
\ parabola 

const. 

s x cj rX2 

Fig. 10 The stresses at a cross-section in DE 

Fig. II   The stresses at a cross-section in  FG 
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lf3b,(a~c) 
N     •   <H 

13 

1 k 

  

1 ' 
<* 'XZ 

Fig. 17. Shear failure        Fig. 18. The second type 
in the web of stress fieid 

c 
k2iy T 

°X *XZ 

Fig. 19. The second type of stress field 
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Fig. 20. The kinematicaily admissible velocity field 
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05€3   4   5   6   7   8   9    10  II    12 13 14  15 16   17 18 19 77e 
Fig. 21. The theoretical values of the Um(t load for SWF^Oseetloh i 
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3 4 5 
Flg. 22. The beam tests   by Baker and Roderick [ll] 

'2 4 6     //c 
Ffg. 24. The portal tests  by Hendry [t2] 
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O&k 

wT"  | L »     i" *   777r 

-Vc • 3.4 
i 1       I       I       I 

2 *—   6        3fc °63      6      9       12     15      ilTft 
Fig. 23. The  beam tests by Hendry   \\2\ 


	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084

